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Abstract: The overall health of streams, including their surrounding urban or agricultural areas, is
inextricably linked to general ecological balance and public health (physical and mental well-being).
This study aims to contribute to the monitoring of rural or suburban areas adjacent to streams.
Specifically, low-cost and rapid ground and Earth observation techniques were used to (a) obtain a
rapid assessment of stream soil and water patterns, (b) create a database of selected parameters for
the study area that can be used for future comparisons, and (c) identify soil variability in agricultural
fields adjacent to streams and determine soil zones that will enable the rational use of inputs (water,
fertilisers, and pesticides). Robust techniques from related fields of topography, geology, geophysics,
and remote sensing were combined using GIS for two selected areas (I and II) in Heraklion, central
Crete (Greece) in the eastern Mediterranean. Our results indicate that area I (east of Heraklion)
is under pressure only in its coastal part, most probably due to urbanisation (land change). The
agricultural fields of area II (west of Heraklion) show normal values for the distribution of electrical
conductivity and magnetic susceptibility and present spatial variability indicating intra-parcel zones.
Intra-parcel variability of the conductivity and magnetic susceptibility should be considered in future
cropping and environmental management.

Keywords: monitoring; soil; water; imperviousness density; topography; geophysics

1. Introduction

The world’s population—currently over 7.5 billion people—is expected to rise to
9.7 billion by 2050 [1]. Many people will continue to be concentrated in cities and large
metropolitan areas, increasing environmental pressures and facilitating the transmis-
sion of diseases [2–6]. Healthy, clean water is inextricably linked to healthy communities
and our quality of life. Streams provide clean water for drinking, agriculture, recreation,
and industry. They have well-vegetated banks that help filter pollutants from storm
water or anthropogenic activities that flow into the stream and provide habitats for
wildlife [7,8]. They invite fishing, kayaking, exploration, or just quiet listening as the
water flows over the rocks. Many of our urban and suburban streams unfortunately do
not provide these services. They are impacted by polluted water [9], bank erosion [10],
loss of intact habitat along stream corridors [11], dams that block fish passage and
accumulate sediment, and invasive species [12]. In addition, agricultural land can
severely affect the natural function of streams if not properly maintained. Agricultural
activities can lead to significant changes in the structure of river corridors and the
environmental functions that we all benefit from [13,14]. Working too close to a river
corridor or changing the shape of the river can result in the removal of vegetation from
riverbanks, floodplains, and uplands. Vegetation removal often leads to more flooding,
soil erosion, runoff, and soil compaction, enabling chemical and bacterial contamina-
tion in river corridors. Agricultural landscapes with degraded streams are of global
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significance, and nutrients are part of the problem. Pesticides and nutrients (especially
nitrogen, phosphorus, and potassium) applied during the growing season can leach
into groundwater or enter river corridors via surface water, either in dissolved form
or adsorbed to soil particles [15–20]. Stream habitat, canopy cover, quantity/quality
of organic matter, temperature and flow regimes, and biodiversity are all negatively
affected by agriculture [21]. Runoff of excess N, P, and sediment from agricultural land
can affect water quality downstream and lead to algal blooms and subsequent hypoxic
“dead zones” far from the nutrient source [22].

Earth observation (EO) by satellites, aircrafts, and drones, in situ measurements, or
ground-based monitoring stations can provide a unique and timely source of data that
are comparable across countries, regions, and cities and provide reliable and up-to-date
information. Among other things, the state and development of our environment on land,
at sea, and in the air can be quickly assessed. The practical advantages of using EO data are
obvious. Significant scientific breakthroughs and subsequent application development have
supported climate monitoring, resource assessment, and environmental monitoring [1]. In
this context, many parameters and spatial features relevant to the interrelated domains of
environmental, human, and animal health can be assessed through proxy measurements
from space and the ground.

There is a great need to spatially and temporally monitor and further quantify the
environmental quality in streams and the land surrounding them to raise awareness among
policy makers and the public about the environmental degradation of these exceptional
habitats [23–25]. Considering how vulnerable these systems are to climate change and
human pollution, the aim of this work is to demonstrate the effective use of topographic
analysis, supported by geological, geophysical, and EO imagery and integrated into geo-
graphic information systems (GIS) to (a) rapidly assess soil and water characterisation and
indicate possible polluted areas for further research and (b) interpret the results qualita-
tively and quantitatively to support future environmental management and sustainable
agriculture. This study was carried out for two areas (I and II) in Heraklion, central Crete,
eastern Mediterranean (Figure 1a,b).

According to the latest official data from the Hellenic Statistical Authority (EL-
STAT) in 2021, the population of Crete is estimated to be around 634,000 people. The
population of Crete was about 336,000 in 1920 and has more than doubled since then.
Over time, there has been a trend towards urbanisation, with more and more people
living in the island’s towns and villages. Ref. [26] discussed various aspects of Crete,
including population growth and urbanisation, as well as the island’s economy and
environment. The same author [26] noted that the island’s population is increasingly
urbanised, with most of the population concentrated in the coastal areas. In terms of the
environment, [26] noted that the island has changed significantly over the last 50 years,
including the abandonment of terraced farming, the disappearance of cereal cultivation
and the increase in olive cultivation. Furthermore, [26] also discussed the spread of roads,
the introduction of greenhouses and piped irrigation, and the decrease in trees on the
island. These changes have affected the island’s resources and habitats and contributed
to the rural depopulation [27].
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Figure 1. (a) Google Earth map showing the location (red arrow) of the study area in the central part 
of Crete (Greece), eastern Mediterranean Sea. (b) Google Earth satellite map, where red polygons 
indicate the selected areas I and II. (c) A presents part of the watersheds in central Crete (Greece) 
while B corresponds to the geological details of the wide area around Karteros Stream (area I) ac-
cording to the geological map of IGME [28] and (d) geological map [28] of Gazanos Stream (area II), 
with a red polygon indicating the agricultural land investigated in this study. In addition, in Figure 
1c, red bullets are the locations of soil sampling for the analyses of the magnetic susceptibility. W1–
W6 indicate the locations of water samples in Karteros Canyon. Black and blue lines correspond to 
the geological faults and the streams in the wide area of study. The colours on the maps are indica-
tive and are used to show the boundaries of geological formations. Explanation of abbreviations: al: 
fluvial and closed basin deposits of Holocene; Pt.tm/Qs: marine terraces and coastal sands of Pleis-
tocene–Holocene; Pl.m: Finikia formation of Lower–Middle Pliocene; M.k: Ag. Varvara formation of 
Upper Miocene; M.m: marls; T-Js.kd: Upper Triassic–Upper Jurassic. 

  

Figure 1. (a) Google Earth map showing the location (red arrow) of the study area in the central part
of Crete (Greece), eastern Mediterranean Sea. (b) Google Earth satellite map, where red polygons
indicate the selected areas I and II. (c) A presents part of the watersheds in central Crete (Greece) while
B corresponds to the geological details of the wide area around Karteros Stream (area I) according
to the geological map of IGME [28] and (d) geological map [28] of Gazanos Stream (area II), with
a red polygon indicating the agricultural land investigated in this study. In addition, in Figure 1c,
red bullets are the locations of soil sampling for the analyses of the magnetic susceptibility. W1–W6
indicate the locations of water samples in Karteros Canyon. Black and blue lines correspond to the
geological faults and the streams in the wide area of study. The colours on the maps are indicative and
are used to show the boundaries of geological formations. Explanation of abbreviations: al: fluvial
and closed basin deposits of Holocene; Pt.tm/Qs: marine terraces and coastal sands of Pleistocene–
Holocene; Pl.m: Finikia formation of Lower–Middle Pliocene; M.k: Ag. Varvara formation of Upper
Miocene; M.m: marls; T-Js.kd: Upper Triassic–Upper Jurassic.
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2. The Environment of This Study

Crete is the largest island in Greece and is known for its stunning natural landscapes,
which were created by intense tectonic and erosive processes that led to the formation of
numerous geological features such as mountains, valleys, and gorges. According to [29],
Crete is drained by about 270 rivers with a Strahler order greater than 2 [30]. Cretan
rivers are ephemeral or seasonal, although some are fed by natural springs and may
carry small amounts of water throughout the year [31]. These rivers and streams provide
important water resources for agriculture and the island’s urban areas and support the
island’s diverse aquatic ecosystems [29]. However, Ref. [32] describes several pressures
affecting Crete’s ecosystems and natural resources. These include the impact of tourism
development, which has led to changes in land use, urbanisation, and an increase
in waste generation. The same authors [32] note that water resources are also under
pressure, as aquifers in some areas are depleted and overexploited, and water quality
is problematic due to pollution from agriculture, industry, and urbanisation. Besides
pressure on water resources, Ref. [32] also mentions other problems such as overgrazing,
forest fires, soil erosion, and the spread of invasive species. Ref. [32] also emphasises
the need for integrated and sustainable land use planning and management, and the
involvement of local communities in decision making processes.

Area I, of about 20 km2 (Figure 1b,(cA,B)), is located east of the Heraklion Basin in
central Crete (Greece), while area II, of about 0.12 km2 (Figure 1b,d), is located west of the
Heraklion Basin. The rivers and streams in both areas I and II flow from south to north into
the Aegean Sea (Figure 1c,d). The main branches of the drainage network are generally
oriented in a north–south direction, while the tributaries run in an E–W, NE–SW, and
NW–SE direction. The geological fault zones in the study area are generally oriented in the
N–S, NE–SW, and NW–SE direction. Area I (Figure 1(cB)) is mainly filled with fluvial and
marine sediments of the Holocene, Pleistocene, Lower-to-Middle Pliocene, Upper Miocene,
and Upper Triassic-to-Upper Jurassic age [28]. The Pleistocene and Holocene sediments
(Pt.tm) are generally present along the entire coastline and consist of unconformably lying
marine terraces and coastal sands. The Holocene sediments (al) comprise mainly fluvial
and closed basin deposits on both sides of the Karteros Stream (Figure 1(cB)). The Finikia
Formation (Pl.m) is of Lower-to-Middle Pliocene age and consists of white marls or marly
limestones, greyish clays with brown thin-bedded intercalations, white-beige fossiliferous
marls, lamellar marls or diatomites, and bioclastic limestones. The base of this formation
generally consists of an unsorted “marly breccia”. It unconformably overlies the Ag.
Varvara Formation (M.k) of Upper Miocene age, which consists of bioclastic reef limestones,
marls, or marly limestones (M.m) and gypsum. Finally, the oldest strata in the area are the
Triassic–Upper Jurassic limestones, dolomitic limestones, and dolomites (Ts-Js.kd). They
are karstified, mainly in the upper layers. Area II (Figure 1b,d) is close to the Gazanos
Stream, and it is filled with sediments corresponding to the Finikia Formation (Pl.m) of
Lower-to-Middle Pliocene age [28]. Both sides of the Gazanos Stream are covered by
Holocene sediments (al) corresponding to fluvial and closed basin deposits (Figure 1d).
In both areas (I and II), there are extensive agricultural parcels, mainly cultivated with
vineyards and olive trees.

The Karteros Stream in area I (Figure 2a,b), of about 8 km in length, flows through the
Karteros Gorge (Figure 2c,d) in the southeastern part of area I (Figure 1b, marked W1–W6).
This stream starts at an altitude of about 600 m and flows down to the coast, eventually
emptying into the Aegean Sea near the village of Karteros. Gorges are an important object of
study for geosciences, as they contain important information about the geological evolution
of the region. They are also important for flora and fauna, as their peculiarity makes
them an excellent retreat. Karteros Gorge is part of a larger geological complex of the
Giouchtas Ecological Park in Archanes (https://landofexperiences.gr/travels/karteros-
gorge/ (accessed on 15 October 2023)). The park includes Giouchtas Mountain [33–35] and
three gorges: Knosanos, Kounaviano, and Astrakanos or Karteros gorge, with a total length
of 22 km. The entire area is environmentally protected (Natura 2000 network). According

https://landofexperiences.gr/travels/karteros-gorge/
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to [35], the ecological status/potential of the Karteros Stream is moderate to poor, while its
chemical status is good. The Gazanos Stream (Figure 1d) in area II flows for about 0.6 km
next to the agricultural land (Figure 2e,f) examined in this work, and according to [35], the
ecological status/potential of this stream is good to poor, while its chemical status is good.
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3. Materials and Methods

Figure 3 presents the different methodological steps followed to achieve the research
objectives. Specifically, ground techniques (topographic analysis, geological mapping, and
geophysical methods) and remote sensing (satellite and aerial imagery) were the sources of
information to integrate Earth observation with stream health and agricultural activity.
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3.1. Topography and Geology

The geological map (Figure 1c,d) of the study area was prepared using the existing
geological map of Heraklion [28] and field observations (Figure 2a–f). The topographic data
(Figure 4) were obtained from the 1:5000-scale topographic maps published by the Hellenic
Army Geographical Service (H.A.G.S.). The methodology for processing the topographic
data was developed by [36] and has been successfully applied in published oceanographic,
ecological, and geological studies [37–40].
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Figure 4. Topographic analyses for area I (Figure 1b) on data from topographic maps of scale of
1:5000, published by the Hellenic Army Geographical Service (H.A.G.S.). The upper left image shows
the elevation (m), the upper right image shows the slopes (◦), the lower left image presents the aspects
(◦), and the lower right image corresponds to the automatic detections based on [36].
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3.2. Geophysical Analyses of Soil and Water

Topsoil samples were collected along the Karteros Stream, and GPS coordinates (in
EGSA_87 system) were taken from each sampling location to match the available topo-
graphic data. Topsoil samples from area I were analysed for magnetic susceptibility using
well-tested methodology, already applied in previous studies [23–25,34,41], to investigate
the study area for possible heavy-metal concentrations [25,34,42–45]. In environmental
magnetism [46], the most used magnetic parameter is magnetic susceptibility (χ), which
is the ratio of the induced magnetisation of a sample in the presence of a weak magnetic
field to the applied field itself. To characterise the stratigraphy in area I (Table 1), the
low-frequency magnetic susceptibility measurements were supplemented with soil prop-
erties such as layer thickness (m) from the geological survey and seismic velocity (km/s)
and resistivity (Omh.m) from previous studies [47,48], which were re-examined in this
work. Agricultural fields in area II (Figure 1b,d) were mapped using GEM-2 from Geophex
Ltd. (http://www.geophex.com/Pubs/gem2_-_how_it_works_detailed.htm (accessed on
15 May 2023)) to determine the spatial distribution of two apparent soil properties, i.e.,
soil apparent conductivity (mS/m) and magnetic susceptibility (10−5 S.I.). GEM-2 is a
multi-frequency instrument that allows different penetration depths of the primary electro-
magnetic field. In this study, we conducted the electromagnetic survey at frequencies close
to 90 kHz because we are interested in topsoil properties for agricultural studies. GEM-2
was held about 1 m (3 ft) above the ground during data collection. Contour and colour
maps of the terrain were then produced, showing the distribution of apparent electrical
conductivity and magnetic susceptibility of the soil according to the instrument manufac-
turer’s specifications (https://pages.mtu.edu/~jdiehl/Homework/GEM2%20Manual.pdf
(accessed on 30 May 2023)).

Table 1. Characterisation of the stratigraphy in area I (Figure 1c).

Formation Thickness
(m)

Seismic Velocity
(km/s)

Resistivity
(Ohm.m)

Low-Frequency (Flow = 0.43 KHz)
Background Magnetic

Susceptibility (SI Units)

Holocene—Fluvial and closed
basin deposits (al) Up to 25 0.7–1 15–30 ~16.5

Holocene—Marine terraces
and coastal sands (Pt.m) 2–4 0.2–0.3 >20 ~15.2

Lower–Middle
Pliocene—Finikia formation

(Pl.m)
>150 ~1.4 20–150 ~18

Upper Miocene—Ag. Varvara
formation (M.k, M.m) ~280 1.4–1.8 250–500 Not measured

Upper Triassic–Upper Jurassic
Limestones (Ts-Js.Kd) Up to 300 5.4–5.8 2000–2500 Not measured

Spectral induced polarisation (SIP) has been used for decades in environmental and
hydrogeological studies to investigate the biogeochemical state, flow, and transport proper-
ties of soils, as well as fluid content and chemistry [25,49–52]. Measurements of the phase
shift and magnitude of conductivity for an injected current over a wide range of frequencies
provide the real and imaginary components of the complex conductivity. The energy loss
(conductivity) corresponds to the real component, while the energy storage (polarisation)
corresponds to the imaginary component [53,54]. In the present work, we used the portable
SIP field/laboratory instrument to determine the SIP response of Karteros water using the
procedure already described in [25].

http://www.geophex.com/Pubs/gem2_-_how_it_works_detailed.htm
https://pages.mtu.edu/~jdiehl/Homework/GEM2%20Manual.pdf


Remote Sens. 2023, 15, 5485 8 of 19

3.3. Remote Sensing and G.I.S

To investigate the percentage and change in soil sealing in the wide area of the
Karteros Stream, we used the imperviousness density (IMD) from Copernicus (https://land.
copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps (ac-
cessed on 28 September 2023)). In particular, the IMD data were visualised at a spatial
resolution of 10 m (2018) and harmonised according to the national coordinate system
(GGRS87/Greek grid) in order to make the IMD data compatible with the other datasets
used in this work. Finally, the IMD data were reclassified. The degree of imperviousness
ranged from 1% to 100% and was determined using a semi-automatic classification based
on the calibrated NDVI. Finally, the spatial distribution of the data was presented with GIS.

In addition, multispectral data for the dry period of 2023 were collected using a DJI
Mavic 3M and processed using Pix4D Version 4.5.6 software. In this work, we present an
example of the simple ratio (SR) vegetation index used to estimate the amount of vegetation.
The SR index corresponds to the ratio of light scattered in the NIR and absorbed in red
bands (NIR/RED), reducing the atmospheric and topographic effects. High SR values
correspond to vegetation with a large leaf area or high canopy closure, while low SR values
correspond to soil, water, and no vegetated features.

4. Results

It is well known that topography is one of the most important factors influencing the
morphology of the main rivers and their tributaries, as the dimensions of the channels
increase from the high mountainous regions towards the flat alluvial plains. Further-
more, detailed knowledge of the topography is highly important for site-specific crop
management, to have quantitative knowledge of the factors and interactions affecting
yield [55]. For example, steep ground slopes favour terraced crops, while gentle slopes are
better for large-scale farming operations. Regarding topography, ground elevation [55,56],
slope [57], aspect (slope direction) [58], wetness index, flow direction, flow length, and
flow accumulation [59], are among the topographic and hydrological attributes impacting
the drainage networks and the crop production systems. Figure 4 presents an example
of a digital, topographic analysis for area I, where elevation ranges from 0 m to about
300 m (Figure 4, elevation) and the relief is mainly smooth, with slopes ranging between
0◦ and 20◦ (Figure 4, slope). Sporadically, slopes are up to 35–40◦ (Figure 4, slope) while
prevailing aspects are east, west, north, northeast, and northwest (Figure 4, aspects). It is
obvious that aspects and occasionally steep slopes are mainly related to N–S-, NE–SW-, and
NW–SE-oriented geological faults in area I, determined from the comparison of Figure 4
(detection strength) and Figure 1c. It is commonly known that geological faults are strongly
related to hydrogeological systems.

Table 1 summarises the characteristics of the geological formations that occur in area I.
Fluvial and closed basin deposits (al), marls, and marly limestones (Pl.m, M.k) predominate
in the study area, exhibiting seismic velocities between 0.7 and 1.8 km/s and resistivity
values between 15 and 500 Ohm.m. The magnetic susceptibilities of Pl.m and M.k are low
and probably correspond to the background magnetic susceptibility (Table 1). Figure 5
shows the spatial distribution of low-frequency magnetic susceptibility (χLF). Most χLF
values are in the range of 8–28 (S.I. units), which, compared to the work of [25] for the
wetland of Almyros in the west of Heraklion, possibly indicate that most sites along the
Karteros Stream in area I are not contaminated by heavy metals.

The SIP response of the Karteros water (area I) is shown in Figure 6a–c. The real
conductivity of the six (6) samples along the stream crossing the Karteros Gorge ranges from
0.875 mS/cm to 1.2 mS/cm in the frequency range 0–1000 Hz, while the real conductivity of
the tap water is 0.72 mS/cm (Figure 6a). The imaginary conductivity of the six (6) samples
does not show much variation in the frequency range 0–1000 Hz (Figure 6b), while the
phase shift (mRad) increases slightly with the increasing frequency (Figure 6c).

The sampling sites of the Karteros Stream were also assessed for their degree of
urbanisation based on the surrounding impervious surface (IMD) (Figure 7a) to investigate

https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps
https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps
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a possible relationship between urbanisation and soil parameters. As can be seen in
Figure 6a, high IMD values reflecting a higher degree of urbanisation are found in the lower
part of the Karteros Stream near the Karteros coast. Next, IMD (Figure 7a) was compared
with the spatial distribution of the low-field magnetic susceptibility (LFS) in part of the
Karteros Stream (Figure 7b). Sites with high IMD also yield relatively higher values for LFS
(see red ellipse in Figure 7a,b).

It is well known that mapping soil variability at plot level is a crucial step for
the strategic management of agricultural fields to make farms more economically and
ecologically sustainable and to protect the environment, especially near streams. Figure 8
presents the simple ratio (SR) vegetation index for the Gazanos Stream (area II). The
riparian vegetation and the olive trees next to the stream of Gazanos present SR values
higher than 15, while the soil presents values lower than 15. The SR index clearly
facilitates the accurate mapping of vegetation and the differentiation from soil. Mapping,
using GEM-2, was also carried out on agricultural parcels of area II in the wet period of
2022–2023. This area is covered by Pliocene sediments of the Finikia formation (Pl.m,
Figure 1d). Figure 9 shows examples of intra-parcel soil zones for five parcels in area II
defined according to two soil properties, namely, apparent electrical conductivity and
magnetic susceptibility. For example, the apparent conductivity of the soil in parcel
1 ranges from 0 to 80 mS/m (Figure 9a), while the magnetic susceptibility of the soil
ranges from −42 to 20 (10−5 S.I.) (Figure 9b), and the three soil zones were defined
based on the histogram in Figure A1a,b (Appendix A). Similarly, two or three intra-
parcel zones are also indicated in the rest four parcels (Figure 9a,b). Considering the
distribution of apparent electrical conductivity and magnetic susceptibility in all five
parcels mapped with GEM-2, we strongly believe that intra-parcel variability should be
further investigated by conducting soil analyses.
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(accessed on 15 June 2023)) in area II (Figure 1b).

5. Discussion

Water and soil are among the most important components for life and prosperity
on our planet. However, the many competing pressures on the ecosystem services of
water and soil are increasingly unsustainable, and climate change is exacerbating these
pressures [60]. All over the world, environmental policy suffers from a lack of data to make
targeted and efficient decisions. The need for highly accurate and detailed information is
becoming increasingly urgent as the consequences of the climate crisis are now visible all
over the planet. Earth observation based on satellite and aerial imagery (Figures 7 and 8),
supported by ground-based techniques (Figures 1, 4–6 and 9 and Table 1), is a unique source
of data on natural resources and ecosystems to mitigate environmental hazards and ensure
sustainable development [61–66]. As an example, we refer to Figure 7 of this paper, in
which the IMD (%) corresponding to the percentage and change in soil sealing, is combined
with the distribution of soil magnetic susceptibility in the lower part of the Karteros Stream,
which is affected by agricultural and tourism activities as well as urbanisation. The part
of the Karteros Stream marked by a red ellipse in Figure 7a is surrounded by branches
of the transport network and has a (not so dense) urban structure that contributes to an

https://www.ktimatologio.gr/en
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IMD of more than 41%. Moreover, this part of the stream presents the relatively highest
values (greater than 30 S.I. units) of χLF magnetic susceptibility (Figures 5 and 7b). In
addition, the morphology in this part of the Karteros Stream is mostly related with the
north, northeast, and east aspects since the relief is smooth with slopes ranging between 0◦

and 20◦ (Figure 4). IMD (Figure 7a) also agrees with the prevailing aspects (Figure 4) in
this part of the Karteros Stream.

Looking at the values of the real SIP conductivity of the Karteros water samples
(Figure 6a), which range between 0.85 mS/cm and 1.2 mS/cm and are not far from
the real conductivity of tap water (0.7 mS/cm), the water of the Karteros stream is
not hard. The imaginary SIP conductivity of the Karteros water samples shows small
fluctuations in the frequency range 0–1000 Hz (Figure 6b), indicating weak polarisation
effects [51,53,54]. However, this part of the Karteros stream probably needs more attention
in the sense that more specialised analyses of the stream water and soils around this part
of the stream should be carried out in the future [23,25]. Specialised analyses of water
quality could include physicochemical parameters (pH, electrical conductivity, salinity,
chloride, and total hardness), nutrients (ammonium, phosphate, nitrate, and silicate) and
photosynthetic pigments (chlorophyll-a, chlorophyll-b, and chlorophyll-c), while soil
analyses could focus on geochemical analyses of metal concentrations (K, Ca, Ti, Mn, Fe,
Ni, Cu, Zn, Pb, and others).

The presence of soil structures has not been explicitly considered in climate and Earth
system models, partly due to incomplete methodological means to characterise them at
relevant scales and parameterise them in spatially extended models [67]. Over the last
two decades, efforts have been made to develop and standardise the use of geophysics for
mapping soil properties (e.g., porosity, density, and clay content) and state variables (e.g.,
water content and salinity) [68–70]. In this work, the intra-parcel variability within plots
next to the Gazanos Stream is investigated using electromagnetic methods (Figure 9a,b),
and two or three soil zones are defined in each plot based on the spatial distribution of
apparent conductivity and magnetic susceptibility. This soil zonation could be extremely
helpful in the future agricultural management of the plots by reducing cultivation costs,
increasing the quality and quantity of yields, and finally protecting the riparian environ-
ment of the Gazanos stream through the rational use of water, pesticides, and fertilisers.
This is especially recommended for agricultural watersheds, as agricultural activities can
greatly affect the well-being and health of aquatic systems. Streams are closely connected
to their surrounding landscapes and reflect their watersheds, which, if impacted by agri-
cultural practises, can lead to hydrological changes and/or the degradation of all water
bodies flowing in the area. Finally, the Earth observation techniques can strongly support
ecosystem services that are important for human life and well-being. Urban and suburban
river and stream ecosystems provide important ecosystem services to their inhabitants and
promote urban sustainability [71–74].

6. Conclusions

In this work, ground-based techniques from the related fields of digital topography,
geology, and geophysics (spectral induced polarisation, apparent electrical conductivity,
and magnetic susceptibility) are used together with remote sensing to provide (a) rapid,
non-destructive, and cost-effective monitoring of urban and suburban aquatic bodies and
the agricultural or urban land surrounding them, and (b) identify sites that are likely to be
under environmental pressure and require further specialised water and soil analysis to
confirm their possible contamination. We conclude with the following points:

- Specialised topographic analyses have always been part of environmental and agricul-
tural studies, as topography is one of the most important factors affecting the aquatic
environment and agriculture.

- The combination of spectral induced polarisation (real and imaginary components)
and magnetic susceptibility using remote sensing seems ideal for rapid and cost-
effective environmental monitoring.
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- Agricultural land west of Heraklion is dominated by intra-parcel soil variability.
It is strongly recommended that intra-parcel soil variability be considered prior to
any agricultural activity to support the rational use of inputs (water, pesticides, and
fertilisers) and further protect the aquatic environment.

- Topographic attributes such as slope and aspect, imperviousness density, vegetation
indices, soil apparent electrical conductivity, soil magnetic susceptibility, and the
spectral induced polarisation response of water (real and imaginary components,
phase) are robust indicators for a rapid and cost-effective environmental investigation
of rural and suburban areas bordering streams before conducting specific analyses.

Recommendations for the future include (a) the development of a standardised envi-
ronmental protocol for monitoring the aquatic environment and agricultural activities in
Crete and (b) the monitoring the temporal variability for selected water and soil indicators.
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44. Petrovsky, E.; Kapička, A.; Jordanova, N.; Borůvka, L. Magnetic properties of alluvial soils contaminated with lead, zinc and
cadmium. J. Appl. Geophys. 2001, 48, 127–136. [CrossRef]

45. Boyko, T.; Scholger, R.; Stanjek, H.; MAGPROX Team. Topsoil magnetic susceptibility mapping as a tool for pollution monitoring:
Repeatability of in situ measurements. J. Appl. Geophys. 2004, 55, 249–259. [CrossRef]

46. Thompson, T.; Oldfield, F. (Eds.) Environmental Magnetism; Allen and Unwin: London, UK, 1986.
47. Kokinou, E.; Papadopoulos, I.; Vallianatos, F. A geophysical survey on marls of Heraklion city in Crete Island (Southern Hellenic

Arc, Greece). In Proceedings of the 2nd International Conference on Engineering Mechanics, Structures, Engineering Geology
(EMESEG ’09), Rhodes Island, Greece, 22–24 July 2009; pp. 202–207, ISBN 978-960-474-101-4.

48. Savvaidis, A.; Margaris, B.; Theodoulidis, N.; Lekidis, V.; Karakostas, C.; Loupasakis, C.; Rozos, D.; Soupios, P.; Mangriotis, M.-D.;
Dikmen, U.; et al. Geo-Characterization at selected accelerometric stations in Crete (Greece) and comparison of earthquake data
recordings with EC8 elastic spectra. Cent. Eur. J. Geosci. 2014, 6, 88–103. [CrossRef]

49. Atekwana, E.A.; Slater, L.D. Biogeophysics: A new frontier in Earth science research. Rev. Geophys. 2009, 47, RG4004. [CrossRef]
50. Revil, A.; Karaoulis, M.; Johnson, T.; Kemna, A. Review: Some low-frequency electrical methods for subsurface characterization

and monitoring in hydrogeology. Hydrogeol. J. 2012, 20, 617–658. [CrossRef]
51. Kemna, A.; Binley, A.; Cassiani, G.; Niederleithinger, E.; Revil, A.; Slater, L.; Williams, K.H.; Orozco, A.F.; Haegel, F.H.; Hördt,

A.; et al. An overview of the spectral induced polarization method for near-surface applications. Near Surf. Geophys. 2012, 10,
453–468. [CrossRef]

52. Kirmizakis, P.; Kalderis, D.; Ntarlagiannis, D.; Soupios, P. Preliminary assessment on the application of biochar and spectral
induced polarization for wastewater treatment. Near Surf. Geophys. 2020, 18, 109–122. [CrossRef]

53. Slater, L.D.; Lesmes, D. IP interpretation in environmental investigations. Geophysics 2002, 67, 77–88. [CrossRef]
54. Binley, A.; Kemna, A. DC Resistivity and Induced Polarization Methods. Hydrogeophysics 2005, 50, 129–156.
55. Kumhálová, J.; Kumhála, F.; Kroulík, M. The impact of topography on soil properties and yield and the effects of weather

conditions. Precis. Agric. 2011, 12, 813–830. [CrossRef]
56. Bakhsh, A.; Colvin, T.S.; Jaynes, D.B.; Kanwar, R.S.; Tim, U.S. Using soil attributes and GIS for interpretation of spatial variability

in yield. Trans. ASABE 2000, 43, 819–828. [CrossRef]

https://doi.org/10.1016/j.geomorph.2013.05.026
https://doi.org/10.1007/978-1-4020-5064-0_1
https://doi.org/10.1190/INT-2015-0067.1
https://doi.org/10.1109/JSTARS.2014.2363080
https://doi.org/10.1080/22797254.2017.1405716
https://doi.org/10.1007/s00367-018-0553-7
https://www.mdpi.com/2072-4292/12/10/1538
https://www.mdpi.com/2072-4292/12/10/1538
https://doi.org/10.3390/rs12101538
https://www.sciencedirect.com/science/article/pii/B9780128186176000196
http://hdl.handle.net/11713/2574
https://doi.org/10.1016/S1464-1895(99)00122-2
https://doi.org/10.1016/S0926-9851(01)00085-4
https://doi.org/10.1016/j.jappgeo.2004.01.002
https://doi.org/10.2478/s13533-012-0163-2
https://doi.org/10.1029/2009RG000285
https://doi.org/10.1007/s10040-011-0819-x
https://doi.org/10.3997/1873-0604.2012027
https://doi.org/10.1002/nsg.12076
https://doi.org/10.1190/1.1451353
https://doi.org/10.1007/s11119-011-9221-x
https://doi.org/10.13031/2013.2976


Remote Sens. 2023, 15, 5485 19 of 19

57. Kravchenko, A.N.; Bullock, D.G. Correlation of corn and soybean grain yield with topography and soil properties. J. Agron. 2000,
92, 75–83. [CrossRef]

58. Kravchenko, A.N.; Bullock, D.G. Spatial variability of soybean quality data as a function of field topography: I, spatial data
analysis. Crop. Sci. 2002, 42, 804–815. [CrossRef]

59. Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information system
analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. Available online: https://pubs.usgs.gov/publication/70142175
(accessed on 25 May 2023).

60. Agnoli, L.; Urquhart, E.; Georgantzis, N.; Schaeffer, B.; Simmons, R.; Hoque, B.; Neely, M.B.; Neil, C.; Oliver, J.; Tyler, A.
Perspectives on user engagement of satellite Earth observation for water quality management. Technol. Forecast. Soc. Chang. 2023,
189, 122357. [CrossRef]

61. Ferreira, B.; Iten, M.; Silva, R.G. Monitoring sustainable development by means of Earth observation data and machine learning:
A review. Environ. Sci Eur. 2020, 32, 120. [CrossRef]

62. Pasher, J.; Smith, P.A.; Forbes, M.R.; Duffe, J. Terrestrial ecosystem monitoring in Canada and the greater role for integrated Earth
observation. Environ. Rev. 2014, 22, 179–187. [CrossRef]

63. Ramirez-Reyes, C.; Brauman, K.A.; Chaplin-Kramer, R.; Galford, G.L.; Adamo, S.B.; Anderson, C.B.; Anderson, C.; Allington,
G.R.H.; Bagstad, K.J.; Coe, M.T.; et al. Reimagining the potential of Earth observations for ecosystem service assessments. Sci.
Total Environ. 2019, 665, 1053–1063. [CrossRef] [PubMed]

64. Crocetti, L.; Forkel, M.; Fischer, M.; Jurečka, F.; Grlj, A.; Salentinig, A.; Trnka, M.; Anderson, M.; Ng, W.-T.; Kokalj, Ž.; et al.
Earth observation for agricultural drought monitoring in the Pannonian Basin (Southeastern Europe): Current state and future
directions. Reg. Environ. Chang. 2020, 20, 123. [CrossRef]

65. Lawford, R.; Strauch, A.; Toll, D.; Fekete, B.; Cripe, D. Earth observations for global water security. Curr. Opin. Environ. Sustain.
2013, 5, 633–643. [CrossRef]

66. Uereyen, S.; Kuenzer, C. A review of Earth observation-based analyses for major river basins. Remote Sens. 2019, 11, 2951.
[CrossRef]

67. Romero-Ruiz, A.; Linde, N.; Keller, T.; Or, D. A Review of Geophysical Methods for Soil Structure Characterization. Rev. Geophys.
2018, 56, 672–697. [CrossRef]

68. Samouelian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage
Res. 2005, 83, 173–193. [CrossRef]

69. Allred, B.J.; Daniels, J.J.; Ehsani, M.R. Handbook of Agricultural Geophysics; CRC Press: Boca Raton, FL, USA, 2008.
70. Kritikakis, G.; Kokinou, E.; Economou, N.; Andronikidis, N.; Brintakis, J.; Daliakopoulos, I.N.; Kourgialas, N.; Pavlaki, A.;

Fasarakis, G.; Markakis, N.; et al. Estimating Soil Clay Content Using an Agrogeophysical and Agrogeological Approach: A Case
Study in Chania Plain, Greece. Water 2022, 14, 2625. [CrossRef]

71. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities.
Science 2008, 319, 756–760. [CrossRef]

72. Haase, D. Reflections about blue ecosystem services in cities. Sustain. Water Qual. Ecol. 2015, 5, 77–83. [CrossRef]
73. Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploegn, S.; Aronson, J.; Blignaut, J.N.; Gómez-Baggethun, E.; Nowak, D.J.;

Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108.
[CrossRef]

74. Calapez, A.R.; Serra, S.R.Q.; Mortágua, A.; Almeida, S.F.P.; João Feio, M. Unveiling relationships between ecosystem services and
aquatic communities in urban streams. Ecol. Indic. 2023, 153, 110433. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2134/agronj2000.92175x
https://doi.org/10.2135/cropsci2002.8040
https://pubs.usgs.gov/publication/70142175
https://doi.org/10.1016/j.techfore.2023.122357
https://doi.org/10.1186/s12302-020-00397-4
https://doi.org/10.1139/er-2013-0017
https://doi.org/10.1016/j.scitotenv.2019.02.150
https://www.ncbi.nlm.nih.gov/pubmed/30893737
https://doi.org/10.1007/s10113-020-01710-w
https://doi.org/10.1016/j.cosust.2013.11.009
https://doi.org/10.3390/rs11242951
https://doi.org/10.1029/2018RG000611
https://doi.org/10.1016/j.still.2004.10.004
https://doi.org/10.3390/w14172625
https://doi.org/10.1126/science.1150195
https://doi.org/10.1016/j.swaqe.2015.02.003
https://doi.org/10.1016/j.cosust.2015.05.001
https://doi.org/10.1016/j.ecolind.2023.110433

	Introduction 
	The Environment of This Study 
	Materials and Methods 
	Topography and Geology 
	Geophysical Analyses of Soil and Water 
	Remote Sensing and G.I.S 

	Results 
	Discussion 
	Conclusions 
	Appendix A
	References

